Asymmetric Dimethylarginine, Endothelial Dysfunction and Renal Disease
نویسندگان
چکیده
l-Arginine (Arg) is oxidized to l-citrulline and nitric oxide (NO) by the action of endothelial nitric oxide synthase (NOS). In contrast, protein-incorporated Arg residues can be methylated with subsequent proteolysis giving rise to methylarginine compounds, such as asymmetric dimethylarginine (ADMA) that competes with Arg for binding to NOS. Most ADMA is degraded by dimethylarginine dimethyaminohydrolase (DDAH), distributed widely throughout the body and regulates ADMA levels and, therefore, NO synthesis. In recent years, several studies have suggested that increased ADMA levels are a marker of atherosclerotic change, and can be used to assess cardiovascular risk, consistent with ADMA being predominantly absorbed by endothelial cells. NO is an important messenger molecule involved in numerous biological processes, and its activity is essential to understand both pathogenic and therapeutic mechanisms in kidney disease and renal transplantation. NO production is reduced in renal patients because of their elevated ADMA levels with associated reduced DDAH activity. These factors contribute to endothelial dysfunction, oxidative stress and the progression of renal damage, but there are treatments that may effectively reduce ADMA levels in patients with kidney disease. Available data on ADMA levels in controls and renal patients, both in adults and children, also are summarized in this review.
منابع مشابه
Asymmetric Dimethylarginine (ADMA) and Endothelial Dysfunction: Implications for Atherogenesis
Atherosclerotic coronary heart disease is the leading cause of morbidity and mortality in industrialized countries, and endothelial dysfunction is considered a precursor phenomenon. The nitric oxide produced by the endothelium under the action of endothelial nitric oxide synthase has important antiatherogenic functions. Its reduced bioavailabilty is the beginning of the atherosclerotic process....
متن کاملEndothelial cell dysfunction: can't live with it, how to live without it.
Endothelial cell dysfunction is emerging as an ultimate culprit for diverse cardiovascular diseases and cardiovascular complications of chronic renal diseases, yet the definition of this new syndrome, its pathophysiology, and therapy remain poorly defined. Here, I summarize some molecular mechanisms leading from hyperhomocystinemia, elevated asymmetric dimethylarginine, and advanced glycolation...
متن کاملThe Role of Asymmetric Dimethylarginine (ADMA) in Endothelial Dysfunction and Cardiovascular Disease
Endothelium plays a crucial role in the maintenance of vascular tone and structure. Endothelial dysfunction is known to precede overt coronary artery disease. A number of cardiovascular risk factors, as well as metabolic diseases and systemic or local inflammation cause endothelial dysfunction. Nitric oxide (NO) is one of the major endothelium derived vaso-active substances whose role is of pri...
متن کاملEndothelial dysfunction.
Endothelial dysfunction is characterized by a shift of the actions of the endothelium toward reduced vasodilation, a proinflammatory state, and prothrombic properties. It is associated with most forms of cardiovascular disease, such as hypertension, coronary artery disease, chronic heart failure, peripheral artery disease, diabetes, and chronic renal failure. Mechanisms that participate in the ...
متن کاملAsymmetric dimethylarginine levels in patients with diabetic nephropathy
Diabetic nephropathy is a major cause of endstage renal disease worldwide and is characterised by persistent albuminuria, functional and structural changes in the glomerulus. Patients with diabetes mellitus with kidney damage are at higher risk of fatal and nonfatal cardiovascular events.1 Evidence shows that nitric oxide pathway plays an important role in the development of vascular complicati...
متن کامل